Software Requirements Specification

For

Try Again

Version 1.1
[image: image1.png]‘®2 DragonSoft
‘. ... new ideas. new software.

01-22-05

Revision History

	Version
	Updates
	Date

	0.1
	Started to specify main requirements.
	12-05-2004

	0.2
	First draft completed.
	01-06-2005

	1.0
	Base version complete.
	01-18-2005

	1.1
	Corrected a number of bugs
	01-22-2005

	1.2
	Added Use Cases, Admin and Instructor
	01-23-2005

	1.3
	Inserted The Course Management
	01-26-2005

	1.4
	Added Use Cases
	01-26-2005

Table of Contents

11. Introduction

11.1 Purpose

11.2 Document Conventions

22. Description

22.1 Product Perspective

22.2 User Characteristics

22.2.1 Overall System Oriented

22.2.2 Administrator Oriented

32.2.3 Professor Oriented

32.2.4 Grader Oriented

32.2.5 Student Oriented

43. System Features

43.1 Activity Management

53.2 Test Management

63.3 Assignment Management

83.4 Student Submissions

83.5 Grade Book

93.6 Course Management

114. External Interface Requirements

114.1 Assignment Interfaces

114.2 Authentication

124.3 Mixed Download Files

125. Non-functional Requirements

125.1 Performance Requirements

125.2 Design Constraints

135.3 Security Requirements

136. Use Cases

136.1 Assignment Management Use Cases

136.1.1 createAssignment

146.1.2 createAssignmentFromPreviousAssignment

146.1.3 editAssignment

156.1.4 deleteAssignment

156.1.5 selectActivity

156.1.6 selectActivityFromAssignment

166.1.7 requestActivityDetails

166.2 Activity Management

166.2.1 createActivity

176.2.2 editActivity

176.2.3 deleteActivity

176.2.4 createActivityTemplate

186.2.5 editActivityTemplate

196.2.6 deleteActivityTemplate

196.3 Administration Use Cases

196.3.1 changeUserAccessLevels

206.4 Student Use Cases

206.4.1 changeStudentPassword

206.4.2 registerForCourse

206.4.3 createStudentAccount

216.4.4 submitActivity

216.5 Generic Actor

216.5.1 authenticate

226.6 Test Management

226.6.1 createTest

236.7 Grade Book

236.7.1 assignGrade

236.7.2 viewGrades

25Appendix A: Data Dictionary

29Appendix B: Mixed Download Files

1. Introduction

1.1 Purpose
This document shall specify the software requirements for Try Again, version 1.0, to be developed by DragonSoft, for the RIT Computer Science department.
1.2 Document Conventions

Each requirement presented in this document has a priority level associated with it. There are three priority levels:

P1 – this is a critical requirement that the system cannot function without

P2 – this is a requirement that should be implemented, but the system could function without it

P3 – this is a requirement that should be implemented if time permits, when all P1 and P2 requirements have been met

There are 10 types of requirements, each of which is identified by a three-letter prefix:
USR – identifies a requirement related to user permissions and/or user management

ACT – identifies a requirement related to the activity feature of the system

TST – identifies a requirement related to the testing feature of the system

ASG – identifies a requirement related to the assignment feature of the system

SUB – identifies a requirement related to the file submission feature of the system

GRD – identifies a requirement related to the grade book feature of the system
EXT – identifies an external interface requirement

PER – identifies a performance requirement

DSN – identifies a design requirement

SEC – identifies a security requirement

It should be noted that although each requirement has a numbered suffix, some numbers may not be present (if the requirement was removed from the document).
2. Description

2.1 Product Perspective

During the winter and spring quarters of the 2004–2005 academic year, DragonSoft will develop a replacement for the “try” assignment submission tool used by the RIT Computer Science department. The replacement tool will be a web-based application that runs on the Computer Science department servers.
The new tool will enable students to submit assignments for grading via a web interface. Professors will be able to specify the parameters for an assignment via a separate web interface. Graders of assignments will have a third view of the system, in which they can view student submissions and the results of automated tests.

2.2 User Characteristics

The following requirements define the different types of user groups and their basic permissions.
2.2.1 Overall System Oriented
The system shall:

USR-1: have four user groups: administrator, professor, grader, and student. Priority: P1
USR–2: allow a user to be part of more than one group. Priority: P2

USR–13: allow Students (here, “students” does not refer to users part of the student user group) to be able to register as users of the system through (and only through) the internal Computer Science Department computer network. Priority: P2

2.2.2 Administrator Oriented
An administrator shall:

USR–3: have the ability to add users to the system. Priority: P1

USR–4: have the ability to remove users from the system. Priority: P1
USR–5: have the ability to assign any user to any user group. Priority: P1

USR–6: be able to perform any action that a professor or a grader can perform. Priority: P1
USR–15: have the ability to remove any user from any user group. Priority: P1

2.2.3 Professor Oriented
A professor shall:

USR–7: have access to activity management, test management, and assignment management. Priority: P1

USR–8: be able to perform any action that a grader can perform. Priority: P1

USR–14: have the ability to add users to the grader user group (and then assign those users assignments to grade). Priority: P1

2.2.4 Grader Oriented
A grader shall:

USR–9: have the ability to view and assign grades to student submissions (for activities part of assignments that the grader has been assigned to grade). Priority: P1
2.2.5 Student Oriented

A student shall:
USR–10: be able to submit files for any active activity part of an assignment in one of the student’s classes (this action may be performed multiple times for an activity). Priority: P1
3. System Features
3.1 Activity Management
3.1.1 Description

An activity is a distinct part of an assignment. An activity may be created for later use, and saved as an activity template. Each activity consists of one or more file names that can be later submitted by students as solutions. Optional properties of an activity are: any number of file names that will be ignored if submitted; any number of compile statements; and any number of tests. An activity part of an assignment also has the following properties: a number of points, a starting time, and a submission deadline.
3.1.2 Functional Requirements
Overall System Oriented

The system shall:

ACT–7: ensure that the modification or removal of an activity or activity template shall have no effect on activities already created from it. Priority: P1

ACT-17: record a change history for each activity. The date, time, user name of editor, and comments will be recorded anytime a change is made. The history log will be made available to other professors. Priority: P3

Professor Oriented
A professor shall:

ACT–1: be able to create a new activity by specifying the properties defined by the “activity” entry in Appendix A. Priority: P1

ACT–2: be able to create an activity from an activity template. Priority: P1

ACT–4: be able to save an activity as part of an assignment or as an activity template. Priority: P1

ACT–5: be able to edit any of the properties of a saved activity. Priority: P1

ACT–3: be able to create an activity from an old activity previously part of an assignment. Priority: P2

ACT–6: be able to remove a saved activity template from the system. Priority: P2

ACT–8: be able to associate one or more “student download files” with an activity. These files may be later removed from the activity. Priority: P2

ACT–9: be able to associate one or more “grader download files” with an activity. These files may be later removed from the activity. Priority: P2

ACT–10: be able to associate one or more “mixed download files” with an activity, which will be available in both “student download files” and “grader download files”. The mixed download file may be later removed from the activity. Priority: P2

ACT–11: be able to associate one or more “official solution files” with an activity, which shall be accessible by graders. Priority: P2

ACT–13: be able to designate any “official solution file” as a “fixed solution file”. Priority: P2

ACT–12: have the option to download an archive of the “student download files” and/or the “grader download files” associated with an activity. Priority: P3

ACT–14: If “official solution files” are provided for an activity, the system shall allow a registered professor to add the compiled versions (in other words, the files generated when the compile statements for the activity are performed on the “official solution files”) to the “student download files” for the activity. Priority: P3

ACT–16: be able to add any number of messages to the “student download file news” associated with a set of “student download files”. Priority: P3

A student shall:

ACT–15: be able to download the “student download files” associated with an activity one at a time or as an archive. Priority: P2

3.2 Test Management
3.2.1 Description
To verify that the numerous solutions submitted for a given activity have certain characteristics, tests may be created and automatically run against each set of submitted files. A test is associated with an activity, but the testing process is fairly involved and warrants its own feature section.
3.2.2 Functional Requirements
Professor Oriented

A professor shall have the ability to:

TST–1: create a test for an activity by specifying the properties defined by the “test” entry in Appendix A. Priority: P2

TST–2: edit any of the properties of a previously created test. Priority: P2
TST–3: remove a previously created test from an activity. Priority: P2

TST–4: upload input files and/or expected output files for a test from the professor’s computer. Priority: P2
TST–7: designate the standard output stream or the standard error stream of a student submission as a “no output” stream (under the parameters of the related test). Priority: P2
TST–9: add any of the input files provided for a test to the “student download files” for the activity that the test belongs to. Priority: P2
TST–10: If a professor has added any of the input files provided for a test to the “student download files” for the activity that the test belongs to, then he or she may also add any of the expected output files provided for the test to the “student download files” for the activity that the test belong to. Priority: P2

TST-12: specify a collection of input files and their associated expected output files to share the same test fields as described in the data dictionary. Each input file will be treated as a separate test when reporting results. Priority: P2

TST–5: perform any test for an activity on the “official solution files” for the activity (if provided). Priority: P3

TST–8: select a group of tests, and then update a test property for all those tests at once. Priority: P3

TST–11: If a professor has provided “official solution files” for a test, the system shall allow the professor to generate the expected output files for the test by running the test (without comparing any output) against the “official solution files”. Priority: P3

3.3 Assignment Management
3.3.1 Description

An assignment is a set of one or more activities assigned to a group of students. On its own, an activity cannot be assigned – it must be part of an assignment. Once assigned as part of an assignment, an activity has a number of points, a starting time, a submission deadline, and an optional late submission deadline. Adding the number of points of each activity part of an assignment will determine the total number of points of that assignment.

3.3.2 Functional Requirements
Overall System Oriented

The system shall:

ASG-16: record a change history for each assignment. The date, time, user name of editor, and comments will be recorded anytime a change is made. The history log will be made available to other professors. Priority: P3

Professor Oriented

A professor shall be able to:

ASG–1: create a new assignment by specifying one or more activities as defined in ASG–2 and/or ASG–3, and then selecting a group of students that will need to complete the assignment, as defined in ASG–7. Priority: P1
ASG–2: specify an activity for an assignment by creating the activity as defined in ACT–1, ACT–2, and/or ACT–3, and then providing the following properties: a number of points, a starting time, a submission deadline, and an optional late submission deadline. Priority: P1

ASG–7: compose a group of students by adding individual students, the students in a class, and/or the students in a course. Priority: P1

ASG–3: specify a “placebo” activity for an assignment by specifying a number of points. Priority: P2

ASG–4: associate an “assignment XML description” file with an assignment (which will be used to generate corresponding “assignment pages” and “grader pages”). Priority: P2
ASG–5: add activities (as defined in ASG–1) to an existing assignment. Priority: P2

ASG–6: remove activities from an existing assignment. Priority: P2

ASG-12: associate one or more “student download files” with an assignment which will be made available in each activity’s “student download files”. Files posted to an assignment may also be later removed from the assignment. Priority: P2

ASG-13: associate one or more “grader download files” with an assignment which will be made available in each activity’s “grader download files”. Files posted to an assignment may also be later removed from the assignment. Priority: P2

ASG-15: select groups of students to be considered a team. Professors may violate the predefined team size, but a warning is displayed when doing so. Priority: P2
ASG–8: offer one or more students a submission extension for an activity (part of an assignment). Priority: P3

ASG–9: copy an assignment, change any of its properties, and reuse it for another group of students. Priority: P3

ASG–11: supply student download files, grader download files, and/or mixed download files per assignment, in which case they will be made available (as student download files or grader download files) for each activity in that assignment (in addition to the student download files and grader download files already supplied when the activity was created). Priority: P3

ASG-14: associate one or more “mixed download files” with an assignment, which will be available in both “student download files” and “grader download files” for each of the assignment’s activities. Mixed download files posted to an assignment may be later removed from the assignment. Priority: P3

Student Oriented

A student shall be able to:

ASG–10: only see activities whose starting time has passed. Priority: P3
3.4 Student Submissions
3.4.1 Description

Students can provide solutions for activities (part of assignments) they are assigned by submitting one or more files. The system also provides mechanisms to automatically compile and test such files.
3.4.2 Functional Requirements
Overall System Oriented

The system shall:

SUB–3: store the submitted files, and the results of any processing done on the submitted files, for the most recent submission by each student. Priority: P1

SUB–4: notify a student at the time of submission if the files he or she submitted were accepted or ignored. Priority: P1

SUB–7: reject any submission if a student submission does not contain all required submission files. Priority: P1

SUB-8: notify the student if a student submission does not contain all required submission files. Priority: P1

SUB–5: display to a student, at the time of submission, the “pass” or “fail” status of each test performed on the files submitted by a student, unless the test is designated as “hidden”. Priority: P2

SUB–6: display to a student, at the time of submission, the output of each test performed on the files submitted by a student, unless the test is designated as “hidden” or “quiet”. Priority: P2

SUB–2: keep a log of all student submissions, containing the following information: the time stamp of the submission, and any test results. Priority: P3
Student Oriented

A student shall be able to:

SUB–1: submit one or more files as a solution to an active activity that is part of an assignment given to the student. Priority: P1

3.5 Grade Book

3.5.1 Description

The grade book feature allows graders to view student submissions and assign grades to each of them. It also allows a student to view the grades assigned to any of his or her past submissions.

3.5.2 Functional Requirements
Overall System Oriented

The system shall:

GRD-13: When grading a team assignment, the same grade and comments are applied to each student on the team. The system shall allow graders to modify the grade of individual students but require graders comments when doing so. Priority: P2

Professor Oriented

A professor shall be able to:

GRD-12: to select which (if any) data exportation modules to use for a given course. Priority: P3

Grader Oriented

A grader shall be able to:

GRD–1: view and/or download any of the files a student submitted for an activity (part of an assignment that the grader is assigned to grade). Priority: P1

GRD–2: assign grades and comments to each student submission for an activity (part of an assignment that the grader is assigned to grade).

Priority: P2

GRD–3: When assigning a grade for a student submission, the grader shall be able to view how many points the related activity is worth, and the results of any tests performed on the submitted files. Priority: P2

GRD–4: give a student “extra credit” for an activity, by giving the student a higher grade in terms of points than the activity being graded is actually worth. Priority: P3

GRD–5: download an archive of the files a given student submitted for an activity (part of an assignment that the grader is assigned to grade). Priority: P3

GRD–7: download an archive of all files students submitted for an activity (part of an assignment that the grader is assigned to grade). Priority: P3

GRD–8: download an archive of all files students submitted for activities part of an assignment that the grader is assigned to grade. Priority: P3

GRD–9: obtain a “grading lock” for an activity (part of an assignment that the grader is assigned to grade), if a “grading lock” for that activity does not already exist. Priority: P3

GRD–10: see who has a “grading lock” on any activity. Priority: P3

GRD–11: give up a “grading lock” at any time. Priority: P3

Student Oriented

A student shall be able to:
GRD–6: retrieve any of his or her grades or comments, for any previous solution submitted by the student. Priority: P2
3.6 Course Management

3.6.1 Description

The system shall allow an administrator to manage courses. Administrators of the system will be able to create new courses as well as destroy them.
3.6.2 Functional Requirements

Overall System Oriented

The system shall:

CRS-7: allow for past courses to be archived.

CRS-8: allow for archived courses to be loaded for reference.
Administrator Oriented

An administrator shall be able to:

CRS-1: create courses.

CRS-2: delete courses.

CRS-3: assign professors to a course.

Student Oriented

A student shall be able to:

CRS-4: register to a course.

Professor Oriented
A professor shall be able to:

CRS-5: edit the course roster of students.
CRS-6: assign a grader or graders to a course.
4. External Interface Requirements

4.1 Assignment Interfaces

4.1.1 Description

The system shall utilize exterior files to generate information for students submitting labs. These files belong to another system that this system is dependant upon. The information within the files will describe the tasks and activities to the students so they can more readily complete the lab. The priority assigned to this feature is normal priority as this is not the main functionality of the system.
4.1.2 Functional Requirements

EXT–1: The system shall gather information about the lab from a lab xml descriptor, which adheres to the format specified in “labs.dtd”, if one is given. See http://www.cs.rit.edu/~f2y-grd/xml/labs.dtd Priority: P2

EXT–2: The system shall generate the website material for an assignment by applying the given XSLT (as defined at http://www.cs.rit.edu/~f2y-grd/xml/labs.dtd) to the “assignment XML description file”. Priority: P2
EXT–3: The system shall be able to publish content on the Computer Science Department website for a given lab. This content shall be the html generated from the lab xml descriptor. Priority: P2

4.2 Authentication

4.2.1 Description
The system shall authenticate users against a local database over a secure connection. User creation and course registration will be done via a script students must run from a registered account on the CS machines. This registration script will need to be run once for each course the student is in to register for the course.
4.2.2 Functional Requirements

EXT–4: The system shall include a registration script which may only be run on the CS machines, either locally or over a secure SSH terminal connection. Priority: P1
EXT-5: The registration script will detect the user’s Unix login name. That is the name which will be used as the username when authenticating to the try again system. Priority: P1
EXT-6: If the detected username has not been registered before, the registration script will prompt for a password before adding the username to the try again system. Priority: P1
EXT-7: The registration script will allow users to change their password if previously registered in the try again system. Priority: P1
EXT-8: The registration script will allow users to register for a specific course and section within the try again system. Priority: P1
EXT-9: The system shall authenticate users against a local database over a secure SSL connection. Priority: P1
4.3 Mixed Download Files

4.3.1 Description
The system shall utilize files that a professor provides to a template in order to generate materials for both graders and students. The files generated from these mixed files will be viewable by their respective entities. They may be used for code files and/or text files.
4.3.2 Functional Requirements

EXT–7: The system shall be able to parse mixed files with the format specified in Appendix B.
EXT–8: The system shall include only the relevant sections of text (as defined in by the tags explained in Appendix B) for each the student download files, grader download files, or solution files. If applicable, the file will also be filtered for the relevant activity.
EXT-9: The system shall allow mixed download files to be removed – removing each of the filtered copies of the file.
5. Non-functional Requirements

5.1 Performance Requirements

PER–1: The system shall be able to handle at least 200 simultaneous student submissions. Priority: P1
5.2 Design Constraints

DSN–1: The system shall be flexible enough for the CS department to maintain and expand. Priority: P2

DSN-2: The system shall allow data exportation modules to be added to the system. Priority: P3
5.3 Security Requirements

SEC–1: The system shall not allow unprivileged entities access information within the system. Priority: P1
SEC–2: The system shall prevent outside listening of information for transmissions. Priority: P1
SEC–3: The system shall attempt to minimize test exploitation from student submissions. Priority: P2

6. Use Cases

6.1 Assignment Management Use Cases
6.1.1 createAssignment

Preconditions:

· user is logged in

· user has professor privileges

	User Action
	System Response

	Select Create Assignment
	

	
	Present list of courses to create new assignment for

	Select course
	

	
	Request activities

	[selectActivity] and/or [createActivity]
	

	
	Request student list

	Select course, section, or students
	

	
	Request optional ‘download files’

	Upload ‘download files’
	

	
	Parse (if mixed) and save files

	
	Request optional XML file

	Upload XML file
	

	
	Request optional custom XSLT, DDT files

	Opt for default files
	

	
	Prompt to generate student assignment and/or grader guide pages

	Select generate student assignment pages
	

	
	Generate student assignment pages

	
	Display pages

	Preview pages
	

	
	Prompt for save location

	Enter save location
	

	
	Save student assignment pages

	
	Save assignment

Post conditions:

· The assignment is saved on the server and reflected in the database.

· Activity templates remain unaltered

6.1.2 createAssignmentFromPreviousAssignment
Preconditions:

· user is logged in

· user has professor privileges

	User Action
	System Response

	Select Create Assignment From Previous Assignment
	

	
	Present list of courses to copy assignment from

	Select course
	

	
	Present list of assignments

	Select assignment
	

	
	Present list of courses to create new assignment for

	Select course
	

	
	Copy and save assignment

	[editAssignment]
	

Post conditions:

· The assignment is copied and saved with any changes from edit on the server and reflected in the database.

· Original assignment remains unaltered

6.1.3 editAssignment

Preconditions:

· user is logged in

· user has professor privileges

· user selected a previously created assignment to edit

	User Action
	System Response

	
	Present current assignment details

	Select field to modify
	

	
	Present field options

	Modify field
	

	
	Record modification

Post conditions:

· The assignment is saved on the server and reflected in the database.

6.1.4 deleteAssignment

Preconditions:

· user is logged in

· user has professor privileges

· user selected a previously created assignment to delete

	User Action
	System Response

	
	Present assignment details

	
	Warn user if assignment is active

	
	Prompt for confirmation

	Confirm deletion
	

	
	Delete assignment and it’s activities

Post conditions:

· The assignment is removed from the server and the database.

6.1.5 selectActivity
Preconditions:

· user is logged in

· user has professor privileges

· user is creating or editing an assignment

	User Action
	System Response

	
	Present list of activity templates

	Select template(s) or [selectActivityFromAssignment]
	

	
	[requestActivityDetails] for each selected activity

	Repeat if desired
	

Post conditions:

· Any number of activities have been selected

· Each selected activity has recorded associated details (such as deadlines)

6.1.6 selectActivityFromAssignment
Preconditions:

· user is logged in

· user has professor privileges

· user is creating or editing an assignment

	User Action
	System Response

	
	Present list of courses

	Select course
	

	
	Present list of assignments

	Select assignment
	

	
	Present list of activities

	Select activity(s)
	

Post conditions:

· Any number of activities have been selected

6.1.7 requestActivityDetails

Preconditions:

· user is logged in

· user has professor privileges

· user is creating or editing an assignment

· user has selected a activity(s)

	User Action
	System Response

	
	Request detail fields (points, start time, deadline, late deadline…)

	Enter details
	

	Repeat for each activity OR select ‘apply to all’
	

	
	Record details

Post conditions:

· details are recorded for the selected activity(s)
6.2 Activity Management
6.2.1 createActivity

Preconditions:

· Professor is logged in

	User Action
	System Response

	Professor selects Create Activity from the menu
	

	
	System prompts files associated with the activity

	Professor uploads the files related to the activity
	

	
	System prompts for tests associated with the activity

	Professor creates tests associated with the activity
	

	
	System prompts for expected and ignored files

	Professor enters expected and ignored files
	

	
	System saves activity

Post-conditions:

· Activity is saved in the system

6.2.2 editActivity

Preconditions:

· Professor is logged in

· An activity has been created

	User Action
	System Response

	Professor selects Edit Activity from the menu
	

	
	Prompts the user to select an activity

	Professor selects an activity to edit
	

	
	System displays all information associated with the selected activity

	Professor modifies any desired information
	

	
	System saves activity

Post-conditions:

· Activity is saved with the new changes

6.2.3 deleteActivity

Preconditions:

· Professor is logged in

· An activity has been created

	User Action
	System Response

	Professor selects Delete Activity from the menu
	

	
	Prompts the user to select an activity

	Professor selects an activity to delete
	

	
	System deletes activity

Post-conditions:

· Activity is deleted

6.2.4 createActivityTemplate

Preconditions:

· user is logged in

· user has professor privileges

	User Action
	System Response

	Requests to create an Activity template.
	

	
	Displays the activity template screen

	
	Prompts the user for a name for the activity template

	Provides the name
	

	
	Records the name

	
	Updates view

	Specifies expected files
	

	
	Updates view

	Specifies tests to be associated with the template
	

	
	Update view

	Specifies materials for student and grader
	

	
	Creates corresponding archives

	
	Prompts to run test against grader materials

	Selects to test the grader materials against supplied tests.
	

	
	Displays the outcome of the test

	Selects Submit
	

Post conditions:

· The activity template is saved within the database.

6.2.5 editActivityTemplate

Preconditions:

· user is logged in

· user has professor privileges

· activity template to be edited, exists

	User Action
	System Response

	Requests to edit an Activity template.
	

	
	Displays a list of activity templates

	Selects an Activity Template
	

	
	Shows all the current values of the template’s variables.

	Add/Removes variables to the Activity Template as wanted.
	

	
	Update view

	Selects Submit
	

Post conditions:

· The activity template changes are committed to the database.

· Activities that were previously created by the edited activity template are not affected.

· The log for the activity template is updated.

6.2.6 deleteActivityTemplate

Preconditions:

· user is logged in

· user has professor privileges

· The activity template already exists

	User Action
	System Response

	Requests to delete an Activity template.
	

	
	Displays a list of activity templates

	Selects an Activity Template, or a group of Activity Templates
	

	Chooses Delete
	

	
	Prompts user for confirmation

	Confirms deletion
	

Post conditions:

· The activity template is removed from the database.

· All activities that were created from the deleted activity template are not affected.

6.3 Administration Use Cases

6.3.1 changeUserAccessLevels
Preconditions:

· user is logged in

· user has administrative privileges

· The user being manipulated has a username within the system

	User Action
	System Response

	Chooses option to manipulate user accounts
	

	
	Prompts for the user to manipulate

	Specifies username of the user to manipulate
	

	
	Displays current privileges for the specified username

	Specifies to give grader type privileges to user for CS1
	

	
	Prompts for confirmation

	Confirms
	

Post conditions:

· The privileges are recorded.
· The manipulated user now has grader privileges for the course CS1

6.4 Student Use Cases
6.4.1 changeStudentPassword

Preconditions:

· Student is logged into a CS Machine locally or remotely.

· Student has created an account.

	User Action
	System Response

	Student executes registration script to change password
	

	
	Prompts for new password

	Student inputs password
	

	
	Prompts to confirm password

	Student confirms password
	

	
	Validates and stores user’s password

6.4.2 registerForCourse

Preconditions:

· Student is logged into a CS Machine locally or remotely.

· Student has created an account.

	User Action
	System Response

	Student executes registration script for a specific course
	

	
	Prompts for password

	Student inputs password
	

	
	Validates user’s password;

Prompts user to confirm the course registration

	Student confirms course registration
	

Postconditions:
· Student is part of the course roster.
6.4.3 createStudentAccount

Preconditions:

· Student is logged into a CS Machine locally or remotely.

· Student has not created an account.

	User Action
	System Response

	Student executes signup script
	

	
	Prompts for new password

	Student inputs password
	

	
	Prompts to confirm password

	Student confirms password
	

Postconditions:
· Student has been added to the system.

6.4.4 submitActivity

Preconditions:

· Student is logged into a Try Again system.

· Student has created an account.

	User Action
	System Response

	Student selects an activity
	

	
	Prompts for required files needed to submit

	Student submits one or more files
	

	Submits
	

	
	Logs student submission

	
	Process submitted files

	
	Display accepted/ignored files

	
	Display output of non-hidden tests (“pass” or “fail”)

Postconditions:
· The pass or fail status of the submission is stored within the database.

6.5 Generic Actor

6.5.1 authenticate

Preconditions:

· The user possesses a valid username and password.
	User Action
	System Response

	User navigates to system login page
	

	
	System prompts for username and password

	User enters username and password
	

	
	System authenticates credentials against database

	
	System brings user to main application screen

Post-conditions:

· User is logged in

6.6 Test Management

6.6.1 createTest

Preconditions:

· Professor is logged in.

· Professor has defined an activity and now wants to add a test to it.

	User Action
	System Response

	Professor selects add test option
	

	
	Displays test creation interface.

	Professor selects the add test command option.
	

	
	Requests command string, maximum run time, and maximum directory size.

	Professor inputs command string, maximum run time, and maximum directory size.
	

	
	Adds test command to the test.

	Professor selects to upload an input file.
	

	
	Displays file selection menu.

	Professor uploads input file.
	

	
	Input file added to test.

	Professor selects to upload an expected output file for the standard output stream.
	

	
	Displays file selection menu.

	Professor uploads expected output file.
	

	
	Expected output file will be compared with the standard output stream when the test is run.

	Professor selects the add pass command option.
	

	
	Requests the command string.

	Professor inputs command string.
	

	
	Pass command will be executed every time the test passes.

	The professor selects to make the test “quiet”.
	

	
	The “pass/fail” results will be displayed upon submission, but no other output.

	Professor selects the add test button.
	

	
	The created test is saved.

Post conditions:

· The created test is now part of the activity.

6.7 Grade Book

6.7.1 assignGrade

Preconditions:

· Student has submitted a solution for the activity.

· Grader is logged in to the grade book for the activity.

	User Action
	System Response

	Grader requests to download archive of the files a student submitted for the activity.
	

	
	Link is provided with the requested archive.

	Grader wants to see how many points the activity is worth, and any grading guidelines.
	

	
	The number of points is displayed, along with the grading guidelines.

	Grader reviews files offline.
	

	Grader determines how many points will be awarded to the student, and inputs the amount.
	

	
	The grade is recorded for the student for the activity.

	Grader adds a comment about another possible algorithm the student could have used.
	

	
	The comment is recorded with the grade.

Post conditions:

· The student will be able to retrieve his or her score for the activity.

6.7.2 viewGrades

Preconditions:

· Student has received grades for all activities part of an assignment.

· Grader is logged in to the system and opened the grade book display.

	User Action
	System Response

	Student selects to display the grade for a given activity.
	

	
	Grade for the selected activity is displayed, along with any comments.

	Student selects to display the grade for a given assignment.
	

	
	Grade for the selected assignment is displayed (which is the sum of the grades for all individual activities in the assignment).

	Student selects to display the grades for a all of the activities part of an assignment.
	

	
	Grade for each activity part of the assignment is displayed on the same page.

Appendix A: Data Dictionary

Active activity – an activity (part of an assignment) is “active” if its starting time has passed but its submission deadline (or late submission deadline, if one is given) is still in the future.
Activity – a distinct part of an assignment. Required properties: required submission files and/or optional submission files. Optional properties: ignored submission files; any number of compile statements; any number of tests, and any number of cleanup commands. An activity part of an assignment also has the following properties: a number of points, a starting time, a submission deadline, and an optional late submission deadline.
Activity template – an activity is considered a “template” if it’s not part of an assignment. Activity templates allow activities to be created at any time, without having to create an assignment.

Assignment – a set of one or more activities assigned to a group of students; can include corresponding “assignment pages” and “grader pages”.

Assignment pages – the web pages that will instruct students how to complete the activities in an assignment. These pages are optionally generated by providing an “assignment XML description” file at the end of the assignment creation process.

Assignment XML description – this file is used to generate the “assignment pages” and the “grader pages” for an assignment. Web pages are generated via a corresponding XSLT document. See Section 4 – External Interface Requirements.
Cleanup command – a command that will be executed on each set of submitted files, after all compile statements and tests are done. Cleanup commands are always executed, even if previous commands have failed.

Compile statement – a command that will be executed on each set of files submitted for an activity, possibly resulting in more files being generated. Each compile statement will be assigned a maximum run time, and an optional maximum directory size. If a compile statement fails, the submission fails.

Command – any command in the system may be any number of statements which will be executed under a UNIX account bash terminal. Commands may be entered directly into the system or read from a script file.

Course – a course is the entity which is comprised of a name, a 7 digit course ID, a section number and a quarter.
Data exportation module – a module that will allow all assignment grades to be posted to an external system. (e.g. a MyCourses data exportation module may be created, and if selected to be used for a course then when a grader enters a grade for an assignment, the grade would be posted to both the try again grade book as well as the MyCourses grade book.)
Expected output file – used to indicate the expected output that a student submission should produce (to the standard output stream or the standard error stream).

Expired activity – an activity (part of an assignment) is “expired” if its submission deadline has passed.

Fail command – a command that will be executed if the related test resulted in a “fail” status. Each fail command will be assigned a maximum run time and a maximum directory size.

Fail status – a test results in a “fail” status if any of the conditions for a “pass” status are not met

File names – here, “file names” refers to the names of the files; may include wildcards. For example, a set of file names could be “Server.java ServerTest.java LabQuestions.txt”. A set of file names containing wildcards could be “Server*.java ServerTest.java *.txt”.
Fixed solution file – before a test is executed, fixed solution files are grouped with the files submitted by the student (and the test is then executed on the resulting set). If a fixed solution file has the same name as a file submitted by the student, the file submitted by the student is overridden.

Grader download file – a file that may be associated with an activity and then be accessible by graders, but not students (when the activity is part of an assignment)

Grader pages – the web pages that will instruct graders how to grade the activities in an assignment. Not visible to students. These pages are optionally generated by providing an “assignment XML description” file at the end of the assignment creation process.

Grading lock – allows a grader to have exclusive rights to assign grades and comments to student submissions for an activity.

Hidden test – a non-required test that will not display any result to the student
Ignored submission files – file names that will be ignored if submitted for an activity.

Input file – a file that will be present with the files submitted for an activity (during testing), and can be used as a command line parameter to programs. An input file may also be a code file, similar to “fixed solution files”, except per test instead of per activity. If any file submitted has the same name as an input file, the submitted file is overwritten.
Late submission deadline – the time is specified via year, month, day, hour, and minute
Maximum directory size – if the execution of a command produces files that exceed the maximum directory size assigned, execution is halted, (and the given command fails, as well any subsequent commands that depend on it).

Maximum run time – if the execution of a command takes longer than the maximum run time its assigned, execution is halted (and the given command fails, as well any subsequent commands that depend on it).
Mixed download file – contains information for both students and graders; needs to be split up into a student download file and a grader download file, which is done as soon as it’s associated with an activity. See Section 4 – External Interface Requirements.

“No output” stream – states that no output is expected on the given stream (standard output stream or standard error stream). If a student submission does output anything to the given stream, the related test fails.

Official solution file(s) – believed to be a working solution for an activity. Official solution file(s) are usually created by the professor that created the activity template.
Optional submission files – file names that may be present in student submissions for an activity. If a file name qualifies as an optional submission file, but also qualifies as an ignored submission file, then the file name is an ignored file name.

Pass command – a command that will be executed if the related test resulted in a “pass” status. Each pass command will be assigned a maximum run time and a maximum directory size.

Pass status – a test results in a “pass” status if the following conditions are met: all compile statements complete successfully; none of the test commands fail unexpectedly; and optionally, (if a program is being tested) all output produced matches the expected output.
Placebo activity – a “placebo” activity does not have any of the normal properties of an activity, except for a number of points. Usually used for an assignment task that does not require students to submit files; allows professors to associate a number of points for an assignment with an activity outside of the system. Placebo activities only exist as part of an assignment, and cannot be saved as a template.

Quiet test – will only let the student know if the test resulted in a “pass” or “fail” status. No other results will be displayed to the student.
Required submission files – file names that must be present in student submissions for an activity. If a file name qualifies as a required submission file and an ignored submission file, the file name is a required submission file. Required submission files may not be specified with wildcards.

Required test – in order to be accepted, a student submission must “pass” all “required” tests (of the activity that the submission is for)

Starting time – the time is specified via year, month, day, hour, and minute.
Student download file – a file that may be associated with an activity and then be accessible by students (when the activity is part of an assignment). When specifying student download files, user’s are given the option of make the file read only.
Student download file news – one or more messages associated with the “student download files” for an activity, that will be displayed to the student when he or she tries to download any of the “student download files” (for the activity)

Submission – a student attempt to transmit one or more files from his or her computer to the submission server, as a solution to an activity (part of an assignment).
Submission deadline – the time is specified via year, month, day, hour, and minute.

Submission extension – allows one or more students to submit files for an activity past the submission deadline and the late submission deadline. The time is specified via year, month, day, hour, and minute.

Team – a group of students to be considered one for a given assignment. Submissions may occur from any of the students accounts which will be applied to each student’s account (overwriting any previous submissions).

Test – one or more commands that will be executed on a set of submitted files and result in a status of “pass” or “fail” (see definitions). Each command is assigned a maximum run time and a maximum directory size. Optional properties: any number of input files; any number of expected output files; any number of pass commands; and any number of fail commands. The output sent to the default output stream by any command may be captured and saved in a file. The output sent to the default error stream by any command may also be captured and saved in a file. A test may be designated as “required” and/or “quiet” – and if it’s not designated as either, it may be designated as “hidden”.
Appendix B: Mixed Download Files

Mixed mode files are files which contain tags to identify pieces that should be visible to only specific groups of people. The tags are defined as follows:
· Student text: “--STUD-begin” and “--STUD-end”. Text between these tags will be visible in the student download files.
· Graded text: “--GRAD-begin” and “--GRAD-end”. Text between these tags will be visible in the grader download files.

· Solution text: “--SOLU-begin” and “--SOLU-END”. Text between these tags will be visible in the fixed solution files as well as the grader download files.

· Activity specific text: “--ACT1-begin” and “--ACT1-end” where the number may be replaced by the specific activity number. Text between these tags will be visible in the specific activity’s download files.

Tags do not have to be at the beginning of a line, this allows them to be hidden behind comments (the entire line to which the tag is found will be filtered from the text). When mixed download files are uploaded to the system, the user must specify which files to generate: student download files, grader download files, and solution files. If the file is specified for an assignment, it will be parsed and filtered for each activity. Users may preview each generated file and all generated files will be deleted upon removal of the mixed download file.
Below is an example mixed download file as well as a sample of what each filtered version of the file would contain:

The mixed download file:

//

// Sample mixed download file

//
class MyFirstLab

{

// --ACT1-begin

 public static void main(String args[])

 {

 // --STUD-begin

 // TODO::Print the text “Hello World!”

 // --STUD-end

 // --SOLU-begin

 System.out.println("Hello World!");

 // --SOLU-end

 }

// --ACT1-end

// --ACT2-begin

public static void main(String args[])

 {

 // --STUD-begin

 // TODO::Write and call a method to print the text “Hello World!”

 // --STUD-end

 // --SOLU-begin

 printMessage();

 // --SOLU-end

 }

// --GRAD-begin

/*

 * When grading this assignment, be sure to check for the following:

 * - student wrote a separate method to print “Hello World!”

 * - method is commented properly

 * - award extra credit to any students who call a non-static method

 */

// --GRAD-end

// --SOLU-begin

public static void printMessage()

{

 System.out.println("Hello World!");

}

// --SOLU-end

// --ACT2-end

}

The activity 1 student download file file:

//

// Sample mixed download file

//
class MyFirstLab

{

 public static void main(String args[])

 {

 // TODO::Print the text “Hello World!”

 }

}

The activity 1 fixed solution file:

//

// Sample mixed download file

//
class MyFirstLab

{
 public static void main(String args[])

 {

 System.out.println("Hello World!");

 }
}

The activity 1 grader download file:

//

// Sample mixed download file

//
class MyFirstLab

{

 public static void main(String args[])

 {

 System.out.println("Hello World!");

 }

}

The activity 2 student download file:

//

// Sample mixed download file

//
class MyFirstLab

{

public static void main(String args[])

 {

 // TODO::Write and call a method to print the text “Hello World!”

 }

}

The activity 2 solution file:

//

// Sample mixed download file

//
class MyFirstLab

{

public static void main(String args[])

 {

 printMessage();

 }

public static void printMessage()

{

 System.out.println("Hello World!");

}

}

The activity 2 grader download file:

//

// Sample mixed download file

//
class MyFirstLab

{

public static void main(String args[])

 {

 printMessage();

 }

/*

 * When grading this assignment, be sure to check for the following:

 * - student wrote a separate method to print “Hello World!”

 * - method is commented properly

 * - award extra credit to any students who call a non-static method

 */

public static void printMessage()

{

 System.out.println("Hello World!");

}

}

PAGE

